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We have developed a comprehensive gene orientated phylogenetic resource, EnsemblCompara GeneTrees, based on
a computational pipeline to handle clustering, multiple alignment, and tree generation, including the handling of large
gene families. We developed two novel non-sequence-based metrics of gene tree correctness and benchmarked a number
of tree methods. The TreeBeST method from TreeFam shows the best performance in our hands. We also compared this
phylogenetic approach to clustering approaches for ortholog prediction, showing a large increase in coverage using the
phylogenetic approach. All data are made available in a number of formats and will be kept up to date with the Ensembl
project.
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The use of phylogenetic trees to describe the evolution of bi-

ological processes was established in the 1950s (Hennig 1952) and

remains a fundamental approach to understanding the evolution

of individual genes through to complete genomes; for example, in

the mouse (Mouse Genome Sequencing Consortium 2002), rat

(Gibbs et al. 2004), chicken (International Chicken Genome Se-

quencing Consortium 2004), and monodelphis (Mikkelsen et al.

2007) genome papers, and numerous papers on individual

sequences. Now routine, the determination of vertebrate genome

sequences provides a rich data source to understand evolution,

and using phylogenetic trees of the genes is one of the best ways to

organize these data. However, the increased set of genomes makes

the compute and engineering tasks to form all the gene trees

progressively more complex and harder for individual groups to

use. The Ensembl project provides an accurate and consistent

protein-coding gene set for all vertebrate genomes (International

Human Genome Sequencing Consortium 2001; Dehal et al. 2002;

Mouse Genome Sequencing Consortium 2002; Gibbs et al. 2004;

Xie et al. 2005; Mikkelsen et al. 2007; Rhesus Macaque Genome

Sequencing and Analysis Consortium 2007). Previously (until

April 2006), Ensembl provided a basic method for tracing ortho-

logs via the Best Reciprocal BLAST method, similar to approaches

used in other genome analyses, such as Drosophila melanogaster

(Adams et al. 2000) or human (International Human Genome

Sequencing Consortium 2001). In June 2006 (Hubbard et al.

2007), we replaced this system with a phylogenetically sound,

gene tree-based approach, providing a complete set of phyloge-

netic trees spanning 91% of genes across vertebrates. In addition

to the vertebrates we have included a few important non-verte-

brate species (fly, worm, and yeast) to act both as out groups and

provide links to these model organisms. In this paper we provide

the motivation, implementation, and benchmarking of this method

and document the display and access methods for these trees.

There have been a number of methods proposed for routine

generation of genomewide orthology descriptions, including

Inparanoid (Remm et al. 2001), MSOAR (Fu et al. 2007), OrthoMCL

(Li et al. 2003), HomoloGene (Wheeler et al. 2008), TreeFam (Li

et al. 2006), PhyOP (Goodstadt and Ponting 2006), and PhiGs

(Dehal and Boore 2006). The first four, Inparanoid, MSOAR,

OrthoMCL, and HomoloGene, focus on providing clusters (or

linked clusters) of genes, without an explicit tree topology. PhyOP

(Goodstadt and Ponting 2006) uses a tree-based method, but be-

tween pairs of closely related species, resolving paralogs accurately

by using neutral substitution (as measured by dS, the synonymous

substitution rate). TreeFam provides an explicit gene tree across

multiple species, using both dS, dN (nonsynonymous substitution

rate), nucleotide and protein distance measures, and the

standard species tree to balance duplications vs. deletions to in-

form the tree construction, using the program TreeBeST (http://

treesoft.sourceforge.net/treebest.shtml; L. Heng, A.J. Vilella, E.

Birney, and R. Durbin, in prep.).

The PhiGs method (Dehal and Boore 2006) is a leading

phylogenetic-based method that produced a comprehensive

phylogenetic resource for the genomes at the time it was run, and

the basic outline of its analysis, which was clustering of protein

sequences, followed by phylogenetic trees, is similar to the

method presented here. However, the PhiGs resource covered

a smaller number of species (23 vs. 45) and has been difficult to

keep up to date with the advances in gene sets and genomes.

Another major difference between PhiG-based phylogenetic trees

and the phylogenetic trees presented here is that the former was

calculated using a single maximum likelihood method based on

protein evolution. In contrast, the Ensembl gene trees are calcu-

lated using a new method, TreeBeST, which integrates multiple

tree topologies, in particular both DNA level and protein level

models and combines this with a species-tree aware penalization

of topologies, which are inconsistent with known species rela-

tionships. We show in this paper that this method produces trees

that are more consistent with synteny relationships and less
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anomalous topologies than single protein-based phylogenetic

methods.

There are also many single phylogenetic tree-building

approaches, many of them based on maximum likelihood meth-

ods; one leading method is PhyML (Guindon and Gascuel 2003).

It is unclear what is the best method to use, in particular in the

context of genome-wide tree building with constraints on com-

putational costs and the need to robustly handle many complex

scenarios usually involving large families with heterogeneous

phylogenetic depths. In this paper, we benchmark in vertebrates

the tree programs TreeBeST and PhyML, and the resulting trees to

basic best reciprocal hit (BRH) methods, and cluster frameworks,

in particular Inparanoid and HomoloGene. We also benchmark to

a recent PhyOP data set. The PhyOP pipeline has recently switched

to use the same tree-building program (TreeBeST) that we use, but

differs in its input clusters. Although we adopted this same tree-

building method, we describe here considerable novel engineering

in the deployment of these methods across all vertebrates. Similar

to the PhiGs resource, we have used the dense coverage of

genomes to provide topologically based timings (i.e., the standard

use of outgroups vs. subsequent lineages to bracket a duplication),

in order to label duplication events.

Results

A robust, computationally efficient pipeline for gene
tree generation

We have built a fault-tolerant pipeline to run our orthology and

paralogy gene prediction analysis using TreeFam methodology.

The fault-tolerance works at two levels: first, we use a robust

compute scheduling engine (in our case, LSF, though other pack-

ages could substitute for this component) to schedule jobs, but

even with the use of LSF’s scheduling and job recovery, there can

be periodic network or disk failures, which result in apparent

successful LSF completion without data being successfully stored.

Our experience is that a second level of data tracking is required, in

particular due to the complex interdependence on compute

results in the pipeline, which is hard to express as single static LSF-

based set of dependencies. Finally the pipeline allows aggregation

of multiple highly similar compute tasks (in our case, BLAST

comparisons) into a single LSF task, which is important to allow

the granularity of the LSF tracking component to be optimized.

The pipeline can be divided into eight main steps that are presented

in the schema in Figure 1. These eight steps are described as follows.

1. Protein data set: For each species considered in the analysis, we

only consider protein coding genes. For each gene, we only

consider the longest protein translation.

2. BLASTP all vs. all: Each protein is queried using WUBLASTP

against each individual species protein database, including its

self-species protein database.

3. Graph construction: Connections (edges) between the nodes

(proteins) are retained when they satisfy either a best reciprocal

hit (BRH) or a BLAST score ratio (BSR) over 0.33.

A BSR for two proteins, P1 and P2, is defined as scoreP1P2/

max(self-scoreP1 or self-scoreP2).

4. Clusters: We extract from the graph the connected components

(i.e., single linkage clusters). Each connected component rep-

resents a cluster, i.e., a gene family. If the cluster has greater

than 750 members, steps 3 and 4 are repeated at higher strin-

gency (see below).

5. Multiple alignments: Proteins in the same cluster are aligned

using MUSCLE (Edgar 2004) to obtain a multiple alignment.

6. Gene tree and reconciliation: The CDS backtranslated protein-

based multiple alignment is used as an input to the tree pro-

gram, TreeBeST, as well as the multifurcated species tree nec-

essary for the reconciliation and the duplication calls on

internal nodes.

7. Inference of orthologs and paralogs: As many users like to use

ortholog look-up tables, we flatten the resulting trees into

ortholog and paralog tables of pairwise relationships between

genes. In the case of paralogs, this flattening also records the

timing of the duplication due to the presence of extant species

past the duplication, and thus implicitly outgroup lineages

before the duplication (see Supplemental Fig. 1A,B for a de-

tailed explanation).

8. Pairwise dN/dS (nonsynonymous substitutions/synonymous

substitutions): We calculate the pairwise dN/dS between pairs of

genes for closely related species using codeml from the PAML

package (Yang 2007).

For the Ensembl v41 assessment, step 6 was divided into step 6a,

using PhyML (Guindon and Gascuel 2003) to build the tree, and

step 6b, using RAP (Dufayard et al. 2005) for the tree reconciliation.

At the end of step 4, if the cluster is large (currently param-

etrized as containing more than 750 genes), the genes in this

cluster are then reinjected into step 3 (Fig. 1, dashed lines), with

Figure 1. Computational pipeline for the EnsemblCompara process.
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only the BSR threshold condition to satisfy. If more iterations are

necessary, the BSR threshold is increased by 0.1 at each iteration.

The same kinds of iterations are applied at the end of steps 5 and 6

when MUSCLE or the tree-building program failed to process

a cluster. This iteration procedure is effectively a hierarchical

breakdown of the initial clustering to get more fine-grained sets of

clusters that can easily be processed. This iterative approach is

critical to generate sensible trees for complex large families, such

as those of zinc finger proteins or olfactory receptors. Although it

would be desirable to place all genes from these gene families into

a comprehensive single tree, there are numerous engineering, al-

gorithmic, and display problems associated with large trees, and

the hierarchical breakdown provides a pragmatic solution for such

families.

The TreeBeST method has two new components. First, it runs

a number of independent phylogenetic methods, in particular

DNA, codon, and protein maximum likelihood models are created

on the same data. Second, the TreeBeST method then creates

a combined tree using a stochastic context free grammar approach

to integrate the different tree information with a model to pe-

nalize duplications and deletions relative to a known species tree.

The result is that TreeBeST will tend to use DNA- or codon-based

methods in the parts of the phylogeny that do not have saturated

DNA mutation rates (e.g., intramammalian comparisons), but

utilizes protein information at longer distances (e.g., comparisons

between mammals and fish). We developed two metrics to assess

the different methods.

Duplication consistency score

We developed a consistency score for

proposed duplications, where we mea-

sure the intersection of the number of

species postduplication over the union;

one expects that most duplications

should have the gene persisting at least in

an equally likely manner in subsequent

lineages. In contrast, incorrect topologies

will often have simply reordered a deep

node leading to usually a few species in

the topologically incorrect positions;

reconciliation to the species tree then

forces the prediction of duplication fol-

lowed by extensive loss in a precisely

correlated manner across the two

daughter lineages. The duplication con-

sistency score captures this unbalanced

nature of poor topologies as the in-

tersection in subsequent lineages is low.

Figure 2 shows clearly that the PhyML/

RAP approach made many more dupli-

cation nodes compared to TreeBeST, and

the vast majority of the additional

duplications from PhyML/RAP have

a low duplication consistency score. This

result is unsurprising, as TreeBeST takes

the species tree as input and explicitly

penalizes both duplication and deletion

of genes; in other words, the TreeBeST

program tends to produce duplication

nodes when the gene tree has extensive

extant members on each side of the

duplication. Although this metric fundamentally reflects the

difference in methodology between PhyML, a pure sequence-

based tree, and TreeBeST, which uses the species tree as input, it is

clear that the TreeBeST results are more biologically consistent,

given the assumption that gene duplication and deletion rates are

rare.

Gene synteny metric

We also developed an alternative metric that was not confounded

by the tree methodology using the fact that gene order and ori-

entation (informally called synteny) are conserved across species.

None of the tree approaches used synteny information in the tree

construction, though the old best reciprocal hit method extended

its range using synteny information. Supplemental Figure 2 shows

the difference in results between a strict BRH approach with no

syntenic information used, PhyML/RAP and TreeBeST. In both

cases, for perfect and good syntenic genes, the TreeBeST pipeline

shows better results. PhyML/RAP gave poorer results than BRH.

We believe this was mainly due to a large number of wrong gene

tree topologies and hence difficult tree reconciliations that over-

estimated duplication events. Such overestimation led to missed

orthology predictions.

Comparison to bootstrap metrics

We compared the duplication consistency measure to the boostrap

support of the duplication nodes from TreeBeST. As expected,

Figure 2. A diagram of the duplication consistency score on an example tree showing unlikely co-
ordinated deletions on the subsequent lineages. The histogram shows the distribution of consistency
scores for both PhyML/RAP and TreeBeST methods. PhyML/RAP has both a higher absolute number of
duplications and far more at low consistency values.

Duplication-aware gene trees in vertebrates
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there is a strong correlation between the bootstrap support and the

duplication consistency measure, with most of the high duplication

consistency measure scores also having high bootstrap support

(Fig. 3), and low duplication consistency measures having a vari-

ety of bootstrap scores, but nearly always below the 80% support

level. Interestingly, there was a set of low bootstrap but high

duplication-consistent set of duplication nodes (Figure 3, bottom

right), but not the inverse set of high bootstrap low duplication-

consistent nodes. These duplication nodes were not obviously

correlated with either internal aspects of the multiple alignment

or tree (e.g., length or average distance from the duplication node

to extant species) or external properties of the genes (e.g., Gene

Ontology [GO] term distribution, Pfam domain sets or the posi-

tion of the duplication node with respect to the vertebrate tree).

This set of genes might reflect the fact that the bootstrap statistic

is about the consistency of the tree across the columns of the

multiple alignment, and this consistency measure does not nec-

essarily have to apply to every gene equally. In contrast, the

duplication consistency measure, which is a property of the be-

havior of genes post-duplication, may be more consistent across

different genes.

The conclusion of this investigation is that TreeBeST was the

best of these extensively tested methods on the criteria of duplica-

tion consistency and synteny consistency criteria. It is hard to have

entirely objective measures of the accuracy of trees (see Discussion

below). We also briefly investigated further tree programs and fur-

ther multiple alignment programs (e.g., ClustalW), but many of

these were not robust enough to work in

a large-scale compute environment with

the complex gene families present across

vertebrates. In the future these metrics

will permit the testing of both other tree

construction programs and other multiple

alignment programs, and we will con-

tinue to test and assess new robustly

engineered programs with a good chance

of improving the trees.

External benchmarking to other
orthology sets

Overlap of ortholog sets

Table 1 shows the overlap of ortholog sets

between EnsemblCompara GeneTrees

v45 to Inparanoid, HomoloGene, PhyOP

or TreeFamCurated for certain pairs of

species. In all our comparisons we have

taken genes as reference, and have

counted for each gene its best homology

prediction. The ranking from best to

worst favored one-to-one orthologs over

one-to-many orthologs, and both were

favored over paralogs. When a gene was

not involved in any homology relation, it

has been labeled as unclassified.

In all the data shown in the tables,

EnsemblCompara always shows better or

similar coverage to any other method.

This is clearly visible in HomoloGene,

where one-third more human genes and

twofold more mouse genes are lost in

HomoloGene as compared with EnsemblCompara GeneTrees v45.

Part of this large difference is the absence of RefSeq (Pruitt et al.

2007) entries for particular human genes, i.e., a problem with gene

prediction sets or coordination between Ensembl and RefSeq IDs in

the genomes rather than the inability to create an orthology

relationship. As HomoloGene is a database, and not a method

that can be applied to a new data set, one cannot perform a per-

fectly matched set. We then restricted the 22,568 human protein

coding genes and 24,496 mouse protein coding genes present

in the Ensembl database to the common RefSeq set used as an

input to HomoloGene to compare the homology types as fairly

as possible between the two data sets. For this set there were

838 HomoloGene associations that could have been made in

EnsemblCompara, compared to 1519 EnsemblCompara cases be-

tween genes with RefSeq IDs, but no HomoloGene association.

Manual inspection of these cases show some complex tree topol-

ogies, but also clear cases of one-to-one orthology that had

been missed in HomoloGene (e.g., the MAGIX gene), whereas the

majority of the missing EnsemblCompara cases came from com-

plex scenarios with unclear correct tree topologies, such as Ig locus

genes.

When comparing our results with Inparanoid (Remm et al.

2001) we used a matched protein set (Ensembl v45) for both

methods. We observed that although they return very similar

results, EnsemblCompara has increased coverage with marginally

increased specificity (see below for specificity measure). The gain

in gene coverage in favor of EnsemblCompara v45 becomes clearer

Figure 3. A scatter plot of the duplication consistency score (x-axis) compared to the bootstrap value
of duplication nodes (y-axis). Because of the large number of values, the density of points is shown
using the smoothScatter kernel-based density function in R.

Vilella et al.
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when looking at more distant species, such as human/medaka or

human/Drosophila.

The PhyOP pipeline has recently moved to using the same

tree-building program (TreeBeST) as TreeFam and EnsemblCompara.

This means that any difference is due to the input clusters. The

PhyOP pipeline shows marginally less unclassified genes than the

EnsemblCompara pipeline, i.e., having orthologous genes pre-

dicted that were not present in EnsemblCompara. Examination of

these cases showed many genes involved in large families. Cur-

rently, EnsemblCompara handles 35 species compared to the more

restricted set of six species in the PhyOP run, and it seems that in

breaking down the large families into appropriate clusters, some

genes in these large families can become orphaned. This is clearly

an area that can be improved in the future.

The TreeFamCurated entry corresponds to the comparison of

our data set against the curated set of TreeFam, with 1247 such

cases only. The curated trees in TreeFam incorporate expert

knowledge to change the topology of trees, for example, by using

information on the conservation of function. In Table 1 we show

that the concordance between our automated prediction set and

the manually curated TreeFam data set is very high. The only ex-

ception seems to be that our method tends to miss orthology

relationships in favor of within-species paralogs. We believe this is

mainly due to wrong tree topologies involving mispredicted

(merged/split/partial) genes for which automatic tree building has

difficulties to place the genes correctly. The manual curation in

TreeFam then corrects this problem and results in a better tree

topology. In the long term, the incorporation of more manual

curation into the human and mouse gene sets, coupled with more

improvements in the gene prediction methodology in Ensembl

should progressively remove these errors.

Comparison using the synteny metric

We were interested in looking at the differences in the synteny

metric, as definedabove,betweenthe different methods as indicative

of their specificity. The plot in Figure 4 shows the number of human

genes involved in homology relations as a function of the number of

human syntenic genes. EnsemblCompara and PhyOP always per-

form better in terms of the number of covered human genes, but

there is a remarkably similar level of syntenous predictions between

all the different methods, with, in some cases, Inparanoid showing

a marginally higher rate of syntenous predictions. In the case of

a distant vertebrate species such as medaka, EnsemblCompara is best

on both coverage and specificity measures. The teleost genomes

represent a particular challenge for the clustering mechanism due to

the ancient duplication at the root of the teleost linage, leading to

proportionally more ‘‘ancient’’ paralog relationships, which are hard

to capture using the clustering methods.

Display and access of orthologs

We provide different ways to access and visualize the orthology/

paralogy data and have used it in a number of ways in house.

Web display

The main entry points are GeneView (http://jun2007.archive.

ensembl.org/Homo_sapiens/geneview?gene=ENSG00000129965)

and GeneTreeView (http://jun2007.archive.ensembl.org/Homo_sapiens/

genetreeview?db=core;gene=ENSG00000129965; Fig. 5).

In GeneView, we list the orthologous and within-species

paralogous gene predictions. In each case, the user has access to

MultiContigView, a display that shows the ortholog or paralog

relation in the genomic context of both species. The user can also

see the alignment between the two ortholog/paralog protein

sequences via AlignView.

GeneTreeView (Fig. 5) displays the gene tree and shows the

considered gene highlighted in red in context of all its homolo-

gous relations. Duplication nodes are colored red, whereas speci-

ation nodes are colored blue. The user can dump multiple

alignment of this gene tree with the ‘‘Export’’ menu, as well as

a picture of the tree in different formats (PDF, PS, and SVG). Future

development will include zoom in/out at specific internal nodes to

display subtrees. We will also include the ability to dump the gene

list of the whole tree and a subtree, as well as the multiple align-

ments of the protein/CDS in a subtree.

Projection of GO terms via orthology links

One of the benefits of extensive and accurate prediction of

orthologs is that one can infer that they have (usually) retained

the same function in extant species. Using this methodology we

have automatically projected GO terms from the main two

mammalian sources, human and mouse, out across other verte-

brate species. When we project GO terms, we tag the evidence

as ‘‘inferred from electronic annotation’’ (IEA), consistent with

other GO annotations, to prevent confusion with directly assigned

GO terms, and we only project from experimentally referenced

GO evidence in the source organism. After discussion with the GO

community we have only projected via one-to-one ortholog links,

though it is worth considering in the future a more flexible ap-

proach of projection through duplications for some terms (e.g.,

molecular function terms may rarely be changed by recent du-

plication structure, while biological process terms may change

more frequently). Table 2 shows the set of species for which we

have projected GO terms and the comparison with existing sets.

Even in the well annotated human and mouse genomes, this

projection provides a small increase in the overall number of genes

and a marked increase when not considering genes already IEA
Figure 4. A plot showing different methods in terms of coverage in hu-
man genes (x-axis) vs. number of genes in syntenic relationships (y-axis).
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annotated. Currently the bulk of IEA assignments come via do-

main matching (e.g., Interpro2Go), and thus have to use quite

broad specificity terms, whereas our ortholog annotation can

provide far more detailed GO terms. Of course in less intensively

studied genomes this creates a large set (e.g., ;5000 previously

annotated genes for dog) of GO mappings.

Data mining using BioMart

BioMart is a flexible data mining application that can be addressed

using a user-friendly web page, programmatic access, web service ac-

cess, and the BioMart package in the R statistical environment. bio-

maRt enables the user to do bulk dumps of ortholog or paralog gene

pair lists given a species pair and to restrict this by any valid BioMart

query. It can also dump the peptide/cDNA sequence of the gene in

question.

Raw dump accessible via ftp

We also provide dumps of the gene tree multiple alignments and

the trees themselves in ‘‘emf’’ format, described in more detail at

ftp://ftp.ensembl.org/pub/current_multi_

species/data/emf/protein_trees/README.

The tree is written down in newick format,

embedded in the emf format itself, such

that there is only one file representing the

entire data set. We are developing format

readers in the BioPerl libraries to ensure

easy integration of this flat file data into

other pipelines in a standalone manner.

Programmatic access using the Perl API

The data stored in an EnsemblCompara

database are finally also accessible in a

programmatic way using a Perl API. More

detailed documents and tutorials on how

to install and use the API can be found at

http://www.ensembl.org/info/software/

index.html. Supplemental text shows three examples of Perl scripts

using the API.

Discussion
The orthology pipeline presented here is robust and provides

a framework in which we can assess different components in tree

generation. We have used three key metrics: coverage in homology

relationships, duplication consistency score, and consistency with

genome synteny, to assess both different internal components of

our pipeline and to other orthology sets. In our assessments the

MUSCLE+TreeBeST system, which is the set of methods used in

TreeFam, performs best according to these metrics. One problem

in phylogenetic method development is that it is hard to have

access to objectively correct trees to assess methods. Simulation-

based assessment can explore the potential source of errors, and

TreeBeST performs well, and critically better than sequence-only

methods, with simulated data (L. Heng, A.J. Vilella, E. Birney, and

R. Durbin, in prep.). Of the three metrics used in this paper, the

Figure 5. A screen shot of the gene tree page at Ensembl for the INS (insulin peptide) gene. This shows two independent duplications in rodents
(giving rise to Ins1 and Ins2 genes) and teleost fish. Duplication nodes are shown as red squares whereas speciation nodes are in blue. The green bars to
the right provide a graphical view of the multiple alignment, showing partial gene structures in hamster (Cavia p.), cat (Felis c.), and rabbit (Oryctolagus c.),
due to their low coverage status.

Table 2. GO term projection

Species

Genes with
all GO
termsa

Genes with
non-IEA

GO termsb
Additional

genesc
Additional genes,
discounting IEAd

Total protein
coding genes

Human 16,758 10,314 143 6587 22,680
Mouse 17,664 10,454 108 7318 24,118
Rat 11,434 2006 1779 11,207 22,993
Dog 1262 74 5207 6395 19,305
Cow 5662 330 3220 8552 21,755
Chicken 3636 264 2712 6084 16,736

Number of genes associated with GO terms in different species.
aThe number of genes with GO terms in total.
bThe number of genes with non-‘‘inferred by electronic annotation’’ (IEA) terms.
cThe number of additional genes with a GO term added by projection.
dThe number of genes with a GO term added including cases which previously only had IEA terms.
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first two (coverage and duplication consistency) are somewhat

arbitrary choices, which nevertheless correspond to observations

about ‘‘poor’’ trees from biological experts who use other in-

formation (such as conservation of function) to infer orthology.

Such observations are necessarily anecdotal, but having methods

that produce trees with higher coverage and less duplication fol-

lowed by mirroring loss in the daughter lineages is more consis-

tent with biological expertise. This is shown by the comparison to

the curated TreeFam trees, which attempt to capture systemati-

cally this expert knowledge for a subset of trees. The third metric,

the conservation of synteny for orthologous genes in mammals, is

more principled. However, new methods integrating this in-

formation into phylogenetic methods, such as the MSOAR (Fu

et al. 2007) method, and ( Jiang et al. 2007), could provide more

accurate trees at the expense of not being able to use synteny to

assess accuracy.

In comparison to other genome-wide frameworks, mainly

cluster based, these methods performed better in terms of coverage

with at least as good specificity, as measured by the synteny

metric. In particular, much improvement is seen in the teleost

lineage, where the complex ancient duplication structure, which

has been differentially lost in extant species, leads to more com-

plex phylogenies. In addition, this phylogenetic method provides

a far richer data set including the topological timings of duplica-

tions and the ability to implement other tree-dependent methods,

such as global dN/dS methods. Obviously, one can expect

improvements in both alignments and tree methods in the future,

and this framework is flexible enough both to assess and replace

the components we are using currently.

The phylogenetic information presented here is now a stan-

dard part of the Ensembl system, and will be present in all future

releases, as well as available through the Ensembl archives. This

provides an individual gene-specific biologist both the opportu-

nity to explore the evolution of a gene family, discovering po-

tentially unappreciated ancestral duplications, or draws his or her

attention to other lineages where a gene has been duplicated. As

the presence of recent lineage-specific duplications is often asso-

ciated with positive selection, this could lead a biologist to look

into the specific biology of a previously unappreciated species to

understand the functional role of a gene. More mundanely, the

presence of these accurate orthology links allows other groups in

Ensembl to provide appropriate projection of information across

the vertebrate lineages, using the concentration of information on

human and mouse to inform all of the species in the vertebrate

tree. This is a great boon when coupled with the GO annotation

dictionary, and also allows us to project the HGNC symbols

across species confidently to provide a useful visual tag for genes

in different species. Ensembl also includes the MCL (Enright et al.

2002) generated Ensembl families resource. This is a clustering-

based method designed to work at a far deeper phylogenetic dis-

tance (incorporating events in protein families that occurred

during early eukaryotic evolution) than the ortholog predic-

tion framework presented here. There are both conceptual prob-

lems due to large scale domain changes over this depth of

evolution, which in some cases involve genuine gene split

and merge events, and engineering problems due to the consid-

erable increase in family membership when working at this

scale. We are currently investigating ways both to deepen our

gene family clusters and to reconcile these deeper families to

broader protein family representation, such as TRIBE-MCL, but

currently both methods show complementary aspects of protein

evolution.

Methods

Gene synteny metric
In order to assess the quality of our orthology predictions, we
developed a synteny metric that provides a measure of gene order
conservation. The main idea is that when a predicted ortholog
between two species is flanked (by distance criteria) by ortholo-
gous pairs on each side of each genome in an ordered manner, the
central orthologous link is considered to be consistent with syn-
teny. This measure can be applied to both one-to-one orthologs
and to one-to-many orthologs, where a recent tandem duplication
in one species has duplicated a gene as the criteria for flanking
orthologous genes is based on distance, not gene order. Consid-
ering two species (e.g., human and mouse) and one species as
reference (e.g., human), we called a perfect syntenic gene (on the
reference species) a gene that has an orthology relation for which
both upstream and downstream orthologies exist at 250 kb and are
colinear in both species. We called a good syntenic gene (on the
reference species) a gene that has an orthology relation for which
one orthology exists at 250 kb, either an upstream or downstream,
that is colinear in both species. It is important to note that we are
using this metric to assess the quality of resulting trees, and not
directly as part of our tree-building procedure.

Duplication consistency score

In order to assess the reliability of the duplication calls on internal
nodes of our tree, we developed a simple measure of the consis-
tency of lineages after a putative duplication node. This measure is
based on the assumption that duplication followed by reciprocal
complementary gene losses on the left and right branches of
a duplication node is an unlikely scenario (see main text): Dupli-
cation score = intersection of species between left and right
branches/union of species between left and right branches.

Pipeline framework

We created a fault-tolerant pipeline using Object-Oriented Perl
and a MySQL database. The EnsemblCompara schema API sits on
top of the main Ensembl schema and API, and links to BioPerl
(Stajich et al. 2002) objects for the main data types. The
EnsemblCompara GeneTrees are updated every 2 mo, which
involves being built from scratch for every Ensembl release over
a two-week period using a cluster of computers, generating about
50 GB of data.

Data sets used for assessing our pipeline

In order to compare the various pipeline implementations, we
have performed all analyses on an identical data set from Ensembl
v41 (October 2006). Assessment comprised implementations of
(1) BRH alone and the tree-based programs, (2) PhyML followed by
tree reconciliation with RAP, and (3) TreeBeST.

We also compared our Ensembl release 45 (June 2007), using
the TreeBeST approach data set against other method of pre-
dictions or databases such as HomoloGene, Inparanoid, PhyOP,
and TreeFam.

The species tree for RAP is an adapted tree from the ENCODE
Multiple Sequence Analysis paper and can be found in
the Supplemental materials (Margulies et al. 2007). The species
tree provided to TreeBeST only requires topological constraints, so
we have used an adapted topology from the NCBI taxonomic tree,
which can be found in the supplementary information.
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